
At all scales

Lucius Gregory Meredith

Perm Winter School 2018

What is scale?

Is scale throughput?
Is scale correctness?
Is scale adoption?

Perm Winter School 2018

Is scale throughput?

If we are building an economically secured sensorship-
resistant, public blockchain for the purpose of global
coordination, then scale includes throughput.

In fact, we can articulate the throughput
requirements. Such a blockchain must provide
throughput ceteris paribus with the existing
coordination infrastructure. It must be on par with
Visa and with Facebook.

Perm Winter School 2018

Is scale correctness?

If we are building an economically secured sensorship-
resistant, public blockchain for the purpose of global
coordination, then scale includes correctness.

Firstly, it doesn’t matter how many transactions / sec
the infrastructure conducts if they are not correct.
Producing garbage faster just creates more garbage.

More importantly, the public has to trust the chain. If
they are going to use it to coordinate, they have to
rely on it.

Perm Winter School 2018

Is scale adoption?

If we are building an economically secured sensorship-
resistant, public blockchain for the purpose of global
coordination, then scale includes adoption.

If we build it, will they come?

In reality, the technology is going to be commoditized.
Soon, it will be as easy as pressing a button to standup
a scalable blockchain. Community development,
adoption, and network effects will be more significant
differentiators.

Perm Winter School 2018

That’s all there is to it, really.

Perm Winter School 2018

How do we get throughput?

Concurrency!

How do we get concurrency?

We must have a model that allows us to detect
isolation, and runs isolated transactions at the same
time.

Perm Winter School 2018

How do we get correctness?

By construction!

Wait, what is correct-by-construction?

One way is begin with a formal model of computation
that we know to be consistent with requirements and
then prove correct each step of refinement toward
implementation.

Alternatively, we simply let the formal model be the
implementation!

Perm Winter School 2018

Not very open source

A lot of platforms are like this

The rho-calculus begets both the RhoVM and rholang

How do we get correctness?

We use types to ensure the relationship between
requirements and implementation.

Perm Winter School 2018

The LADL algorithm takes a language spec and a
collection type and generates a sound type system.

Rholang’s types are generated by the LADL algorithm.

contract C(x, u, z, a) = {
 for(y ← x; v ← u){ z!(*y + *v) | P(x, z) }
 | for(w ← z){ a!(*w*2) | Q(z, w) }
}

A simple contract: hello arithmetic

Perm Winter School 2018

 }

 z!(*y+*v)

 z

 }

 a

 z x z

contract C(x

{{
 a!(*w*2)

 a

{

 }

P(x, z) Q(z, a)

for(y ← x; v ← u){ z!(*y+*v) | P(x, z) } | for(w ← z){ a!(*w*2) | Q(z, w) }

for(w ←) u

 u

for(y ← ; v ←

)

)

 x u z
 z a

Perm Winter School 2018

 z a

 z x z

 x

 a

P(x, z) Q(z, a)

 u

 u

 x u z
 z a

Perm Winter School 2018

Every contract is actually a generalized braid or tangle

 z a

 z x z

 x

 a

P(x, z) Q(z, a)

 u

 u

 x u z
 z a

Perm Winter School 2018

Every contract is actually a generalized braid or tangle

When there is a possible
weave across the names
like this we can see that

there is possible contention
on resources

Setting P(x, z) = 0 and Q(z, w) = 0 and running

new x, u, z, w, a in
 x!(1) | u!(2) | C(x, u, z, w, a)
 | for(r ← a){ println(“the resulting value is “ + r) }

Will print “the resulting value is 6”

A test harness

Perm Winter School 2018

 }

 z!(*y+*v)

 z

 }

 a

 z x z

contract C(x

{{
 a!(*w*2)

 a

{

 }

P(x, z) Q(z, a)

for(w ←) u

 u

for(y ← ; v ←

)

)

 x u z
 z a

 x

 x

 u

 u

 x!(1)

 u!(2)
 }

 a
{

println(
 “the resulting value is “ + r
)

for(r ←)

 a

for(y ← x; v ← u){ z!(*y+*v) | P(x, z) } | for(w ← z){ a!(*w*2) | Q(z, w) }

 z anew x u

Input to C

Output from C

 in

Perm Winter School 2018

contract C’(x, u, z, a) = {
 for(y ← x; v ← u){ z!(*y + *v) | P(x, z) }
 | for(w ← z){ a!(*w*2) | Q(z, w) }
 | for(w ← z){ a!(*w*2 - 1) | Q(z, w) }
}

A non-deterministic contract

Perm Winter School 2018

 }

 z!(*y+*v)

 z

 }

 a

 z x z

contract C’(x

{{
 a!(*w*2)

 a

{

 }

P(x, z)
Q(z, a)

for(y ← x){ z!(*y+1) | P(x, z) }
| for(w ← z){ a!(*w*2) | Q(z, w) }
| for(w ← z){ a!(*w*2 - 1) | Q’(z, w) }

for(w ←) u

 u

for(y ← ; v ←

)

)

 x u z
 z a

 }

 z
{

 a!(*w*2 - 1)

 a

 }

Q’(z, a)

for(w ←)

 z a

This is a source of non-determinism
inside the contract

This is a source of non-determinism
inside the contract

Perm Winter School 2018

Setting P(x, z) = 0 and Q(z, w) = 0 and running

K = new x, u, z, w, a in
 x!(1) | u!(2) | []
 | for(r ← a){ println(“the resulting value is “ + r) }

Will print “the resulting value is 6”K[C(x,u.z.w.a)]

Will either print “the resulting value is 6”K[C’(x,u.z.w.a)]
or “the resulting value is 5”
non-deterministically

Generalizing the test harness

Perm Winter School 2018

 }

 z!(*y+*v)

 z

 }

 a

 z x z

contract C’(x

{{
 a!(*w*2)

 a

{

 }

P(x, z)
Q(z, a)

for(y ← x){ z!(*y+1) | P(x, z) }
| for(w ← z){ a!(*w*2) | Q(z, w) }
| for(w ← z){ a!(*w*2 - 1) | Q’(z, w) }

for(w ←) u

 u

for(y ← ; v ←

)

)

 x u z
 z a

 }

 z
{

 a!(*w*2 - 1)

 a

 }

Q’(z, a)

for(w ←)

 z a

This is a source of non-determinism
inside the contract

This is a source of non-determinism
inside the contract

Perm Winter School 2018

Consensus ensures that every VM agrees
on the winner of the race

Consensus ensures that every VM agrees
on the winner of the race

How do we get adoption?

Presence!

Self-governance!

Perm Winter School 2018

P,Q ::= 0 stopped process
input-guarded continuation
output
parallel composition

x,y ::= @P

for(y1 <- x1; …; yN <- xN)P | x1!(Q1) | … | xN!(QN) -> P{@Q1/y1,…,@QN/yN}

deref

 | for(y1 <- x1; …; yN <- xN)P
 | x!(Q)
 | P|Q
 | *x

Perm Winter School 2018

fresh channel | (new x)P
fresh group | (new G)P

Perm Winter School 2018

T,U ::= B1 | … | BM | G[T1,…,TK]\H channel type

H ::= ∅ | G::H effect

input-guarded continuation | for(y1 : T1 <- x1; …; yN : T1 <- xN)P

typed processE ⊢ P:H

P,Q ::= …

 | …

P,Q ::= 0 stopped process
location update
input-guarded continuation
output
parallel composition

situation catalyst

x,y ::= @<K,Q>
K ::= [] | for(x <- y)K | x!(K) | P|K

COMM(K) | for(x <- y)P | x!(Q) -> P{@<K,Q>/y}
U(x) | *@<K,Q> -> COMM(K) | x!(Q)

*y{@<K,Q>/y} = K[Q]

deref

 | U(x)
 | for(y <- x)P
 | x!(Q)
 | P|Q
 | *x
 | COMM(K)

Perm Winter School 2018

for(@<K,Q> <- @<[],0>)*@<K,Q> | @<[],0>!(P) | COMM(K’)
-> *@<K,Q>{@<K’,P>/@<K,Q>} = K’[P]

A simple calculation shows….

If K’ is of the form

for(@<K,Q> <- @<[],0>)*@<K,Q> | @<[],0>!([]) | COMM(K’) | …

then P moves through contexts

Perm Winter School 2018

	Canvas 1
	Canvas 3
	Canvas 7
	Canvas 8
	Canvas 9
	Canvas 10
	Canvas 11
	Canvas 12
	Canvas 24
	Canvas 15
	Canvas 2
	Canvas 16
	Canvas 17
	Canvas 18
	Canvas 19
	Canvas 20
	Canvas 21
	Canvas 22
	Canvas 23
	Canvas 13
	Canvas 5
	Canvas 14
	Canvas 6
	Canvas 4

