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What is scale?

Is scale throughput?
Is scale correctness?
Is scale adoption?
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Is scale throughput?

If we are building an economically secured sensorship-
resistant, public blockchain for the purpose of global 
coordination, then scale includes throughput.

In fact, we can articulate the throughput 
requirements. Such a blockchain must provide 
throughput ceteris paribus with the existing 
coordination infrastructure. It must be on par with 
Visa and with Facebook.
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Is scale correctness?

If we are building an economically secured sensorship-
resistant, public blockchain for the purpose of global 
coordination, then scale includes correctness.

Firstly, it doesn’t matter how many transactions / sec 
the infrastructure conducts if they are not correct. 
Producing garbage faster just creates more garbage.

More importantly, the public has to trust the chain. If 
they are going to use it to coordinate, they have to 
rely on it.
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Is scale adoption?

If we are building an economically secured sensorship-
resistant, public blockchain for the purpose of global 
coordination, then scale includes adoption.

If we build it, will they come?

In reality, the technology is going to be commoditized. 
Soon, it will be as easy as pressing a button to standup 
a scalable blockchain. Community development, 
adoption, and network effects will be more significant 
differentiators.
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That’s all there is to it, really.
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How do we get throughput?

Concurrency!

How do we get concurrency?

We must have a model that allows us to detect 
isolation, and runs isolated transactions at the same 
time.
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How do we get correctness?

By construction!

Wait, what is correct-by-construction?

One way is begin with a formal model of computation 
that we know to be consistent with requirements and 
then prove correct each step of refinement toward 
implementation.

Alternatively, we simply let the formal model be the 
implementation!
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Not very open source

A lot of platforms are like this

The rho-calculus begets both the RhoVM and rholang



How do we get correctness?

We use types to ensure the relationship between 
requirements and implementation.
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The LADL algorithm takes a language spec and a 
collection type and generates a sound type system.

Rholang’s types are generated by the LADL algorithm.



contract C( x, u, z, a ) = { 
   for( y ← x; v ← u ){ z!( *y + *v ) | P( x, z ) } 
   | for( w ← z ){  a!( *w*2 ) | Q( z, w ) } 
}

A simple contract: hello arithmetic
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 z!( *y+*v )

 z

 }

 a

 z x  z

contract C( x

{{
 a!( *w*2 )

 a

{

 }

P( x, z ) Q( z, a )

for( y ← x; v ← u ){ z!( *y+*v ) | P( x, z ) } | for( w ← z ){  a!( *w*2 ) | Q( z, w ) } 

for( w ←    ) u

 u

for( y ←    ; v ←     

 )

 )

 x  u  z
 z  a
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P( x, z ) Q( z, a )

 u

 u

 x  u  z
 z  a
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Every contract is actually a generalized braid or tangle
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Every contract is actually a generalized braid or tangle

When there is a possible 
weave across the names 
like this we can see that 

there is possible contention 
on resources 



Setting P( x, z ) = 0 and  Q( z, w ) = 0 and running 

new x, u, z, w, a in 
    x!( 1 ) | u!( 2 ) | C( x, u, z, w, a )
   | for( r ← a ){ println( “the resulting value is “ + r ) } 

Will print “the resulting value is 6”

A test harness
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 }

 z!( *y+*v )

 z

 }

 a

 z x  z

contract C( x

{{
 a!( *w*2 )

 a

{

 }

P( x, z ) Q( z, a )

for( w ←    ) u

 u

for( y ←    ; v ←     

 )

 )

 x  u  z
 z  a

 x

 x

 u

 u

 x!( 1 )

 u!( 2 )
 }

 a
{

println( 
 “the resulting value is “ + r
)

for( r ←    )

 a

for( y ← x; v ← u ){ z!( *y+*v ) | P( x, z ) } | for( w ← z ){  a!( *w*2 ) | Q( z, w ) } 

 z  anew  x  u

Input to C

Output from C

 in
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contract C’( x, u, z, a ) = { 
   for( y ← x; v ← u ){ z!( *y + *v ) | P( x, z ) } 
   | for( w ← z ){  a!( *w*2 ) | Q( z, w ) } 
   | for( w ← z ){  a!( *w*2 - 1 ) | Q( z, w ) }
}

A non-deterministic contract
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 }

 z!( *y+*v )

 z

 }

 a

 z x  z

contract C’( x

{{
 a!( *w*2 )

 a

{

 }

P( x, z )
Q( z, a )

for( y ← x ){ z!( *y+1 ) | P( x, z ) } 
| for( w ← z ){  a!( *w*2 ) | Q( z, w ) } 
| for( w ← z ){  a!( *w*2 - 1 ) | Q’( z, w ) }

for( w ←    ) u

 u

for( y ←    ; v ←     

 )

 )

 x  u  z
 z  a

 }

 z
{

 a!( *w*2 - 1)

 a

 }

Q’( z, a )

for( w ←    )

 z  a

This is a source of non-determinism 
inside the contract

This is a source of non-determinism 
inside the contract
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Setting P( x, z ) = 0 and  Q( z, w ) = 0 and running 

K = new x, u, z, w, a in 
        x!( 1 ) | u!( 2 ) | []
        | for( r ← a ){ println( “the resulting value is “ + r ) } 

Will print “the resulting value is 6”K[C(x,u.z.w.a)]

Will either print “the resulting value is 6”K[C’(x,u.z.w.a)]
or “the resulting value is 5”
non-deterministically

Generalizing the test harness
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 }

 z!( *y+*v )

 z

 }

 a

 z x  z

contract C’( x

{{
 a!( *w*2 )

 a

{

 }

P( x, z )
Q( z, a )

for( y ← x ){ z!( *y+1 ) | P( x, z ) } 
| for( w ← z ){  a!( *w*2 ) | Q( z, w ) } 
| for( w ← z ){  a!( *w*2 - 1 ) | Q’( z, w ) }

for( w ←    ) u

 u

for( y ←    ; v ←     

 )

 )

 x  u  z
 z  a

 }

 z
{

 a!( *w*2 - 1)

 a

 }

Q’( z, a )

for( w ←    )

 z  a

This is a source of non-determinism 
inside the contract

This is a source of non-determinism 
inside the contract
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Consensus ensures that every VM agrees
on the winner of the race

Consensus ensures that every VM agrees 
on the winner of the race



How do we get adoption?

Presence!

Self-governance!
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P,Q ::= 0 stopped process
input-guarded continuation
output
parallel composition

x,y ::= @P

for( y1 <- x1; …; yN <- xN )P | x1!( Q1 ) | … | xN!( QN ) -> P{@Q1/y1,…,@QN/yN}

deref

     |  for( y1 <- x1; …; yN <- xN )P 
     |  x!( Q ) 
     |  P|Q 
     |  *x 
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fresh channel     |  (new x)P
fresh group     |  (new G)P
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T,U ::= B1 | … | BM | G[T1,…,TK]\H channel type

H   ::= ∅ | G::H effect

input-guarded continuation     |  for( y1 : T1 <- x1; …; yN : T1 <- xN )P 

typed processE ⊢ P:H 

P,Q ::= … 

     |  …  



P,Q ::= 0 stopped process
location update
input-guarded continuation
output
parallel composition

situation catalyst

x,y ::= @<K,Q>
K   ::= [] | for( x <- y )K | x!( K ) | P|K

COMM( K ) | for( x <- y )P | x!( Q ) -> P{@<K,Q>/y}
U( x ) | *@<K,Q> -> COMM( K ) | x!( Q )

*y{@<K,Q>/y} = K[Q] 

deref

     |  U( x ) 
     |  for( y <- x )P 
     |  x!( Q ) 
     |  P|Q 
     |  *x 
     |  COMM( K )
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for(@<K,Q> <- @<[],0>)*@<K,Q> | @<[],0>!(P) | COMM(K’)
-> *@<K,Q>{@<K’,P>/@<K,Q>} = K’[P]

A simple calculation shows….

If K’ is of the form 

for(@<K,Q> <- @<[],0>)*@<K,Q> | @<[],0>!([]) | COMM(K’) | …

then P moves through contexts
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